Copied to
clipboard

G = C2×C22⋊D8order 128 = 27

Direct product of C2 and C22⋊D8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C22⋊D8, C235D8, C24.173D4, D46(C2×D4), (C2×D4)⋊47D4, C4⋊C41C23, (C2×C8)⋊3C23, C223(C2×D8), (D4×C23)⋊7C2, (C2×D4)⋊1C23, (C22×D8)⋊5C2, C2.4(C22×D8), C4.33C22≀C2, (C2×D8)⋊35C22, (C22×C8)⋊7C22, C4.33(C22×D4), C4⋊D447C22, C22⋊C851C22, (C2×C4).215C24, (C22×C4).415D4, C23.846(C2×D4), D4⋊C461C22, (C22×D4)⋊55C22, C22.112C22≀C2, (C23×C4).535C22, (C22×C4).953C23, C22.475(C22×D4), C22.109(C8⋊C22), C2.7(C2×C8⋊C22), (C2×C4⋊D4)⋊43C2, (C2×C4⋊C4)⋊44C22, (C2×C22⋊C8)⋊20C2, (C2×D4⋊C4)⋊20C2, C2.33(C2×C22≀C2), (C2×C4).1089(C2×D4), SmallGroup(128,1728)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C22⋊D8
C1C2C22C2×C4C22×C4C23×C4D4×C23 — C2×C22⋊D8
C1C2C2×C4 — C2×C22⋊D8
C1C23C23×C4 — C2×C22⋊D8
C1C2C2C2×C4 — C2×C22⋊D8

Generators and relations for C2×C22⋊D8
 G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1276 in 524 conjugacy classes, 124 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C22⋊C8, D4⋊C4, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C22×C8, C2×D8, C2×D8, C23×C4, C22×D4, C22×D4, C22×D4, C25, C2×C22⋊C8, C2×D4⋊C4, C22⋊D8, C2×C4⋊D4, C22×D8, D4×C23, C2×C22⋊D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C24, C22≀C2, C2×D8, C8⋊C22, C22×D4, C22⋊D8, C2×C22≀C2, C22×D8, C2×C8⋊C22, C2×C22⋊D8

Smallest permutation representation of C2×C22⋊D8
On 32 points
Generators in S32
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 28)(18 29)(19 30)(20 31)(21 32)(22 25)(23 26)(24 27)
(2 29)(4 31)(6 25)(8 27)(9 18)(11 20)(13 22)(15 24)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 32)(7 31)(8 30)(9 17)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)

G:=sub<Sym(32)| (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27), (2,29)(4,31)(6,25)(8,27)(9,18)(11,20)(13,22)(15,24), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,29)(2,28)(3,27)(4,26)(5,25)(6,32)(7,31)(8,30)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)>;

G:=Group( (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,28)(18,29)(19,30)(20,31)(21,32)(22,25)(23,26)(24,27), (2,29)(4,31)(6,25)(8,27)(9,18)(11,20)(13,22)(15,24), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,29)(2,28)(3,27)(4,26)(5,25)(6,32)(7,31)(8,30)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18) );

G=PermutationGroup([[(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,28),(18,29),(19,30),(20,31),(21,32),(22,25),(23,26),(24,27)], [(2,29),(4,31),(6,25),(8,27),(9,18),(11,20),(13,22),(15,24)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,32),(7,31),(8,30),(9,17),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K2L···2S2T2U4A4B4C4D4E4F4G4H8A···8H
order12···222222···222444444448···8
size11···122224···488222244884···4

38 irreducible representations

dim111111122224
type++++++++++++
imageC1C2C2C2C2C2C2D4D4D4D8C8⋊C22
kernelC2×C22⋊D8C2×C22⋊C8C2×D4⋊C4C22⋊D8C2×C4⋊D4C22×D8D4×C23C22×C4C2×D4C24C23C22
# reps112812138182

Matrix representation of C2×C22⋊D8 in GL5(𝔽17)

160000
01000
00100
000160
000016
,
160000
01000
00100
00010
000116
,
10000
01000
00100
000160
000016
,
160000
031400
03300
000115
000116
,
160000
03300
031400
000115
000016

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,16],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,3,3,0,0,0,14,3,0,0,0,0,0,1,1,0,0,0,15,16],[16,0,0,0,0,0,3,3,0,0,0,3,14,0,0,0,0,0,1,0,0,0,0,15,16] >;

C2×C22⋊D8 in GAP, Magma, Sage, TeX

C_2\times C_2^2\rtimes D_8
% in TeX

G:=Group("C2xC2^2:D8");
// GroupNames label

G:=SmallGroup(128,1728);
// by ID

G=gap.SmallGroup(128,1728);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽